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Abstract

Theoretical relations that can be used to predict transition from a stratified pattern to an intermittent
pattern for gas–liquid flow in long pipes are presented. These include Kelvin–Helmholtz theory, viscous
long wavelength theory, the necessary conditions for a slug to be stable (slug stability theory), and the
definition of a plug flow. Comparisons are made with measurements of transition taken in systems over a
range of pipe diameters and a range of fluid properties. An important result is that slug stability defines
transition in flows with high gas density. A methodology for predicting transition is proposed. � 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concurrent passage of gas and liquid in a horizontal pipe results in a variety of patterns.
For relatively low gas and liquid rates a stratified configuration occurs with the liquid flowing on
the bottom and the gas flowing above it. As the liquid rate is increased (at a constant gas rate)
waves appear on the interface. At still higher liquid rates the waves can grow to the top of the
pipe and, intermittently, form liquid blockages. At low gas velocities this intermittent regime is
characterized as a plug pattern, whereby the gas flows as steady elongated bubbles along the top
of the pipe. At high gas flows a slug pattern exists whereby slugs of highly aerated liquid move
downstream approximately at the gas velocity. The fronts of the liquid slugs are unsteady hy-
draulic jumps.
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The main theoretical approach to predicting the transition to slug or plug flow in a long pipe
has been to consider the stability of a stratified pattern. This examination needs to be accom-
panied by experimental observation because the outcome of the instability is not predicted. A
simplification is to use a linear analysis. The assumption of an inviscid gas–liquid flow and a long
wavelength disturbance yields the following critical condition for flow in a two-dimensional
channel with a height, h ¼ hG þ hL:

qG U
�

� �uu
�2

¼ qLg�h ð1Þ

where U is the velocity of the gas, �uu, the velocity of the liquid, g, the acceleration due to gravity, �,
the volume fraction of the gas. The velocity of the unstable waves is given as

C ffi �uu ð2Þ

for small qG=qL. Eq. (1) predicts that a critical gas velocity is reached when the destabilizing effect
of wave-induced pressure variations in the gas overcome the restoring force of gravity.

Wallis and Dobbins (1973) found that Eq. (1) overpredicts the critical gas velocity by a factor of
about 2. Taitel and Dukler (1976) argued that non-linear effects need to be taken into account
and suggested the following critical conditions for flow in a channel and for flow in a pipe with
diameter D:

qG U
�

� �uu
�2

¼ 1

�
� hL

h

�
qLg�h ð3Þ

qG U
�

� �uu
�2

¼ 1

�
� hL

D

�
qLg�A

dAL=dhL
ð4Þ

where A is the area of the pipe, AL is the area occupied by the liquid and hL is the height at the
middle of the liquid layer. Taitel and Dukler employed geometric arguments to suggest that Eq.
(4) predicts a transition to intermittent flow if hL=DP 0:5 and to annular flow if hL=D < 0:5. The
TD approach is now widely used to predict the initiation of intermittent flow, even though un-
derstanding of the initiation of slug flow has advanced considerably since 1976.

These recent studies show that the onset of intermittent flow can be defined by one of three
criteria: a viscous linear instability of a stratified flow to long wavelength disturbances, a Kelvin–
Helmholtz instability of a stratified flow, the stability of a slug. In addition, the observation that
the front of a slug is an aerated hydraulic jump can be used to define the transition between a plug
flow and a stratified flow. These results have not had as large an impact as they should because a
procedure for their implementation has not been developed. The main goal of this work is to
address this problem.

A significant outcome is the establishment of the importance of slug stability in predicting
transition. Previous work has focused on the instability of a stratified flow. We find that instability
of a stratified flow is necessary for slugs to appear, but that it is not a sufficient condition. Slug
stability must also be satisfied and, actually, can determine the transition. This is the case for all
the systems considered in this paper at relatively high gas velocities. In the two systems with large
gas densities, slug stability defines the transition both at high gas velocities and at low gas ve-
locities, where it predicts the initiation of plugs.
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All of the stability analyses, including that of Taitel and Dukler, predict a critical hL=D. Major
sources of error in using these results are inaccuracies in the modeling of stratified flows and, in
particular, the prediction of the interfacial stress.

2. Review of the literature

An inviscid long wavelength analysis requires that kRe is large, where Re is the Reynolds
number and k is a dimensionless wave number. For flow in a channel the inviscid flow assumption
breaks down for very long wavelengths. Viscous linear stability analyses have been carried out for
small kh and kD by Lin and Hanratty (1986) and by Wu et al. (1987). These analyses need to
include the influences of the interfacial stress, si, and the resisting stresses at the wall. They show
that because C 6¼ �uu, liquid inertia becomes destabilizing and the critical gas velocity is predicted to
be less than what is given by Eq. (1). The most striking confirmation of this theory is a study by
Woods et al. (2000) of air and water flowing in a downwardly inclined pipe. Waves are damped at
low gas velocities in a declined pipe, so the interfacial stress at transition is easily estimated. This
study by Woods and Hanratty provides observations of the appearance of long wavelength waves
and their growth into a slug at a gas velocity equal to that predicted by the viscous long wave-
length (VLW) analysis. The theory also describes transitions in horizontal air–water flows (Lin
and Hanratty, 1986) at low gas velocities, even though slugs are observed to evolve by the bi-
furcation of small wavelength gravity waves, rather than the growth of very long wavelength
waves (Fan et al., 1993). Woods and Hanratty (1996) have argued that, in horizontal stratified
flows, a long wavelength instability might be a trigger to enable smaller wavelength waves to
evolve into a slug.

Eq. (4) and VLW theory correctly predict that the critical gas velocity for air–water flows will
increase with increasing pipe diameter. However, they predict very different effects of liquid vis-
cosity. With increasing viscosity the liquid flow rate decreases for a fixed hL=D and U . Conse-
quently, the destabilizing effect of liquid inertia decreases, so that Eqs. (1) and (2) describe the
behavior in the limit of very large liquid viscosity.

These considerations motivated a study of the effect of liquid viscosity by Andritsos et al. (1989)
in horizontal 9.53 and 2.52 cm pipes. Their measurements agree with VLW theory at viscosities of
16 cp and less. However, quite different results were found for viscosities of 70 and 100 cp. For
these conditions, the interface was smooth at transition. For low gas throughputs, the critical gas
velocity was found to be independent of pipe diameter and to be given by classical inviscid
Kelvin–Helmholtz theory if hL=D is large enough.

Andritsos and Hanratty (1987a), Lin and Hanratty (1987a,b) and Andreussi and Bendiksen
(1989), have observed changes in the wave patterns for a stratified flow. At low gas velocities,
waves are generated when the energy fed to the waves by pressure variations in phase with the
wave slope is greater than the energy dissipated by liquid viscosity (Cohen and Hanratty, 1965).
These waves (which we call Jeffreys waves) will not appear on liquids with large viscosities because
dissipative effects become too large. The transmission of energy from the gas to the waves depends
on the ratio of the wave velocity to the gas velocity (Miles, 1957; Benjamin, 1959). This depen-
dency could account for the disappearance of Jeffreys waves (1925) in downwardly inclined flows,
for which the liquid velocity and the wave velocity increase with increasing declination. When the
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gas velocity exceeds the critical value predicted by the classical, inviscid K–H theory, waves are
always present in a stratified gas–liquid film. These waves are highly irregular and associated
with large interfacial stresses. If the liquid height is large enough, slugs form by wave coalescence
(Lin and Hanratty, 1987a,b).

Experiments show that stability analyses of a stratified flow do not describe the transition when
hL=D is small. This observation was considered by TD when they suggested that hL=D needs to be
greater than 0.5. Theoretical understanding of this necessary condition can be obtained by con-
sidering the stability of a slug (Ruder et al., 1989; Bendiksen and Espedal, 1992). Dukler and
Hubbard (1985) have argued that, for a slug to be stable, the liquid taken up at the front of the
slug must be equal to the liquid shed at its back. In a frame of reference moving with the velocity
of the front of the slug, VS, one obtains the following criterion for neutral stability

ðVS � �uu1ÞAL1 ¼ Qout ð5Þ

where AL1 and �uu1 are, respectively, the cross-sectional area of the liquid layer and the liquid ve-
locity in front of the slug, and Qout is the volumetric flow out of the back of the slug. Eq. (5)
defines an area, AL1, in front of the slug, below which a propagating slug decays. Therefore, it is
not possible to generate slugs on a stratified flow with AL less than the critical AL1 defined by
Eq. (5). Ruder et al. (1989) argued that the back of a slug may be considered to be a bubble.
They used the model of a Benjamin bubble (1968) to calculate Qout in the limit of small gas flows.
Woods and Hanratty (1996) measured Qout and developed a method to predict the stability
of a slug which agrees with observations. The results of Woods and Hanratty are consis-
tent with earlier measurements by Bendiksen (1984) of the motion of long bubbles in inclined
tubes. Both Ruder et al. (1989) and Bendiksen and Espedal (1992) have pointed out that for very
high gas densities slug stability would determine the transition both at high and at low gas ve-
locities.

Ruder and Hanratty (1990) studied the transition between slug and plug flow. This work and
the paper by Ruder et al. (1989) suggest that a necessary condition that requires the front of a slug
be a hydraulic jump can be used to define the boundary between slug and plug flows.

3. Theory

3.1. Mean momentum balances

A stratified flow pattern is represented by a simple geometry that represents the liquid flowing
along the bottom of the pipe as having a level interface (Fig. 1). The vertical height of the liquid
along the centerline is hL. The length of the interface is Si. The lengths of the segments of the pipe
circumference that are in contact with the gas and with the liquid are SG and SL. The areas
covered by the gas and the liquid are AG and AL. (An overbar is used to refer to time-averaged
quantities in Sections 3.2 and 3.3. In Sections 3.1, 3.4, 3.5 and in the figures, time-averages
are represented without using of an overbar.) All of the quantities in Fig. 1 can be calculated with
geometric relations given by Govier and Aziz (1972), if the pipe diameter and either hL or AL are
given.
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The momentum equations are given as

AG

dp
dx

¼ �sBSG � siSi þ qGAGg sin h ð6Þ

AL

dp
dx

�
þ qLg cos h

dhL
dx

�
¼ �sWSL þ siSi þ qLALg sin h ð7Þ

Terms qG and qL in Eq. (6) are the gas and liquid densities, h is the angle of the pipe from the
horizontal, dp=dx is the pressure gradient and dhL=dx is the liquid hydraulic gradient (significant
only at very low gas velocities). Stresses sB, sW represent the resistance at portions of the wall in
contact with the gas and the liquid. Term si represents the stress at the interface. The flow is
assumed to be fully developed ðdhL=dx ¼ 0Þ or to be varying slowly enough that changes in liquid
inertia can be ignored and that pseudo-steady-state assumptions can be made to relate sB, si, and
sW to flow variables.

The liquid and gas phase wall shear stresses, sW and sB, and the interfacial shear stress, si, are
usually defined in terms of friction factors

sB ¼ 1=2fBqGU
2 sW ¼ 1=2fWqLu

2

si ¼ 1=2fiqG U � uð Þ2 or si ¼ 1=2fiqG U � CRð Þ2 ð8Þ

where U is the average gas velocity, u is the average liquid velocity, and CR is the wave velocity. In
turbulent flows the wall friction factors, fW and fB, can be calculated from the Blasius equation if
the pipe wall is smooth

fW ¼ 0:0791Re�0:25
L fB ¼ 0:0791Re�0:25

G ð9Þ
The Reynolds numbers are given by

ReL ¼ DLu=mL ReG ¼ DGU=mG ð10Þ
with the hydraulic diameters defined as

DL ¼ 4AL=SL DG ¼ 4AG SGð þ SiÞ ð11Þ

Fig. 1. A simplified geometry for a stratified flow.
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In laminar liquid flows with a turbulent gas phase, the friction factor in the liquid phase is
not accurately described by a simple function of the Reynolds number. A numerical solu-
tion to the liquid phase momentum equation, given by Russell et al. (1974), can be used in place of
Eq. (7).

dp=dx ¼ � plLUSLð Þ= 2D2Q�� �
ð12Þ

Values for Q� as a function of the non-dimensional liquid height, hL=D, are given in Table 1.
Andreussi and Bendiksen (1989) and Andritsos and Hanratty (1987a,b) have discussed the

accuracy of the relations for sW when hL=D is small. The above equations can be used to calculate
the superficial liquid velocity, USL, if USG, fi and AL (or hL) are known.

3.2. Kelvin–Helmholtz waves

A theoretical analysis of K–H waves is given by Milne-Thomson (1968) and by Yih (1969). A
small amplitude propagating sinusoidal disturbance with wave number kðk ¼ 2p=kÞ is introduced
at the interface of a horizontal stratified flow in a channel

h ¼ �hhþ ĥh exp ik xð½ � CtÞ
 ð13Þ
where �hh is the average height of the liquid, ĥh is the amplitude of the disturbance, and C is the wave
velocity. The gas and liquid layers are assumed to be inviscid and to have uniform mean velocities.
A consideration of the linear momentum equations for the gas and the liquid produces the fol-
lowing dispersion relation:

kqLð�uu� CÞ2 coth k�hhþ kqG U
�

� C
�2
coth kH ¼ g cos h qLð � qGÞ þ rk2 ð14Þ

Here H is the average height of the gas, r is the surface tension, and g is the acceleration of
gravity. The wave velocity, C, is complex with C ¼ CR þ iCI. Solving Eq. (14) for the conditions at
which CI ¼ 0 results in relations for neutral stability (or the onset of instability) of a stratified flow

ðU � �uuÞ2 ¼ g=kð Þ cos h qLð½ � qGÞ=qG þ rk=qG
 tanh kH
� �h

þ qG=qL tanhðk�hhÞ
i

ð15Þ

Table 1

Laminar liquid turbulent gas flow (Russell et al., 1974)

Q� hL=D

1:58� 10�4 0.05

8:87� 10�4 0.10

4:89� 10�3 0.20

1:28� 10�2 0.30

2:40� 10�2 0.40

3:73� 10�2 0.50

5:08� 10�2 0.60

6:15� 10�2 0.70

6:66� 10�2 0.80

6:31� 10�2 0.90
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CR ¼
qGU tanh k�hh

� �
þ qL�uu tanh kH

� �
qL tanh kH

� �
þ qG tanh k�hh

� � ð16Þ

Eqs. (15) and (16) simplify if the gas is deep tanh kH
� �

¼ 1
� �

and the liquid density is much
greater than the gas density qG � qLð Þ

ðU � �uuÞ2 ¼ g=kð Þ cos h qL=qGð Þ þ rk=qG ð17Þ
CR ¼ �uu ð18Þ

The minimum relative velocity at which Eq. (17) is satisfied gives a critical relative gas velocity and
a critical wavenumber,

kCrit ¼ qLg cos h=rð Þ0:5 ð19aÞ

ðU � �uuÞ2Crit ¼ 2
rg cos h

qL

� �0:5 qL

qG

ð19bÞ

The critical relative velocity predicted for flow in a channel is a close approximation to the
critical relative velocity for a stratified flow in a round pipe. For air and water at atmospheric
pressure, Eqs. (17) and (18) predict instability to occur at U � �uu

� �
Crit

¼ 6:6 m/s and k ¼ 1:7 cm.
Increasing the gas density or lowering the surface tension will result in lower critical gas velocities.
This is the case for high pressure natural gas condensate flows where K - H waves are predicted to
appear at U � �uu

� �
Crit

¼ 0:54 m/s and k ¼ 0:8 cm.
When a deep gas assumption is not valid tanh kH

� �
6¼ 1 and qG � qL

� �
, Eq. (15) gives

ðU � �uuÞ2 ¼ g=kð Þ cos hqL=qG½ þ rk=qG
 tanh kH
� �

ð20Þ
This is applicable to thick liquid layers in small diameter pipes. With tanh kH

� �
< 1, Eq. (20)

predicts the onset of K–H waves at a lower gas velocity than is given by Eqs. (17) and (18). In the
limit of small kH , Eq. (20) gives Eq. (1) for a horizontal channel since surface tension effects would
be negligible.

3.3. Viscous long wavelength instability

The VLW analyses of Lin and Hanratty (1986) and of Wu et al. (1987) are essentially the same
as was used by Hanratty and Hershman (1961) to describe waves on thin films over which air is
blowing. Integral forms of the equations of motion are used and the pressure is assumed to vary
only because of gravity in a direction perpendicular to the direction of mean flow. Thus, the
equations of conservation of mass and momentum in the liquid are given as

oAL

ot
þ o uALð Þ

ox
¼ 0 ð21Þ

o uALð Þ
ot

þ o u2ALð Þ
ox

¼ �AL

qL

oPi
ox

�
þ qLg cos h

oh
ox

�
þ 1

qL

siSið � sWSLÞ þ ALg sin h ð22Þ

where Pi is the gas phase pressure at the interface, si, the shear stress at the interface and sW, the
resisting stress at the wall.
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The quantities in this equation are assumed to be given by the sum of mean and fluctuating
contributions. Thus

AL ¼ AL þ ÂAL exp ik xð½ � CtÞ
 ð23Þ

where k is the wavenumber, C is the complex wave velocity and ÂAL is a real number which is the
amplitude of the disturbance. The amplitudes of the wave-induced variations of the pressure and
of the resisting stresses are complex

P̂Pi ¼ P̂PiR þ iP̂PiI
ŝsW ¼ ŝsWR þ iŝsWI

ŝsi ¼ ŝsiR þ isiI

ð24Þ

Eq. (21) gives a relation between the amplitude of the fluctuations in the liquid velocity, ûu, and
ÂAL.

ûu ¼ ðC � �uuÞ ÂAL

AL

ð25Þ

If equations of the form of Eq. (23) are substituted into Eq. (22) and non-linear terms in the
fluctuating quantities are ignored, a relation for C ¼ CR þ iCi is obtained. The real and imaginary
parts of this equation yield the following if neutral stability (Ci ¼ 0) is assumed:

� CR

�uu

�
� 1

�2

¼ � AL

qL�uu2
P̂PiR
ÂAL

� gAL cos h
�uu2

ĥh

ÂAL

þ S i

kqL�uu2
ŝsiI
ÂAL

� SL

kqL�uu2
ŝsWI

ÂAL

ð26Þ

0 ¼ ALk
P̂PiI
ÂAL

þ �ssWSL

AL

� �ssiS i

AL

þ S i

ŝsiR
ÂAL

� SL

ŝsWR

ÂAL

þ �ssi
ŜSi
ÂAL

� �ssW
ŜSL
ÂAL

ð27Þ

Terms P̂PiR and P̂PiI are evaluated by considering a linearized version of the integral forms of the
equations of conservation of mass and momentum for the gas phase. These introduce a resisting
stress on the gas flow at the wall, sB. Eq. (26) gives the following relation for the range of con-
ditions considered in this paper

0 ¼ qLðCR � �uuÞ2 þ AL

AG

qG U
�

� CR

�2 � gALqL cos h
ĥh

ÂAL

ð28Þ

where U � CR

� �
ffi U and ð ÂAL=ĥhÞ ¼ dAL=dh. Eq. (28) defines a critical gas velocity for the initia-

tion of a long wavelength disturbance. The first term represents the destabilizing effect of liquid
inertia and the third, the stabilizing effect of gravity. For an inviscid flow, CR ¼ �uu and liquid
inertia has no influence. However, for very long wavelength waves the stresses, si, sW and sB need
to be considered in order to obtain a wave velocity to substitute into Eq. (28). The wave velocity,
CR, in Eq. (28) is calculated from Eq. (27). Wave velocities obtained in this way are the kinematic
waves defined by Lighthill and Whitham (1955).

The terms ŝsiR, ŝsWR, and ŝsBR are obtained by making the pseudo-steady-state assumption, that
the same relation for si, sW, and sB are valid both for the disturbed and undisturbed flows. Solving
Eqs. (8)–(11) for the fluctuating shear stresses gives
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ŝsWR

�ssW
¼ 1:75

CR

�uuL

� �
ÂAL

AL

� 2
ÂAL

AL

þ 1

4

ŜSL
SL

ð29Þ

ŝsBR
�ssB

¼ 2
ÂAL

A� AL

þ 1

4

ŜSG þ ŜSi
SG þ Si

ð30Þ

ŝsiR
�ssi

¼ 2
ÂAL

A� AL

þ f̂fi
�ffi

ð31Þ

ŝsWI

�ssW
¼ 0

ŝsBI
�ssB

¼ 0
ŝsiI
�ssi

¼ 0 ð32Þ

Lin and Hanratty (1986) derived an expression for f̂fi in Eq. (31) by assuming fi is a function of the
liquid Reynolds number. Measurements of the interfacial friction factor taken by Simmons and
Hanratty (2001) suggest that the friction factor is roughly constant at low velocity. With f̂fi ¼ 0,
Eq. (31) simplifies to

ŝsiR
�ssi

¼ 2
ÂAL

A� AL

ð33Þ

Details of the above analysis are found in Lin and Hanratty (1986).

3.4. Slug stability

Typical features of a slug are shown in Fig. 2. The front is traveling downstream at a velocity Vs.
It scoops up slower moving fluid ðVs > u1Þ from the liquid layer in front at a volumetric flow rate
Qin. The liquid in the slug at station 3 is traveling at an average velocity u3. The rear of the slug
travels at the bubble velocity, VB. Since VB is greater than u3, liquid is shed out of the tail at a
volumetric flow rate Qout. If the mixture velocity, UMix ¼ USG þ USLð Þ, is large enough, the slug
will be aerated by small bubbles traveling at an average velocity U3. The volume occupied by
bubbles in the slug is represented by the void fraction, e.

In a reference frame translating at velocity Vs, the volumetric flow rates of liquid entering the
front of the slug and leaving the back are given by

Qin ¼ Vsð � u1ÞAL1 ð34Þ
Qout ¼ VBð � u3Þ 1ð � eÞA ð35Þ

Fig. 2. Slug flow parameters.
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When the volumetric flow rates in and out of the slug are unequal the slug will either grow
Qout < Qinð Þ or decay Qout > Qinð Þ. When Qout is equal to Qin the slug is neutrally stable and
Vs ¼ VB. Eqs. (34) and (35) give the following condition for AL1 for a slug which is neither growing
nor decaying:

AL1=Að ÞCrit ¼ VBð � u3Þ 1ð � eÞ= VBð � u1Þ ð36Þ
This differs from Eq. (5) in that VB, rather than Qout, is modeled. That is, Qout is defined in terms of
VB. The use of Eq. (36), to calculate ðAL1=AÞCrit, requires relations for u3, e, and VB.

3.4.1. Relations for u3 and e
Assuming incompressible flow, a volume balance between the inlet of the pipe and station 3

gives

USG þ USL ¼ eU3 þ 1ð � eÞu3 ð37Þ
Introducing a slip ratio, s ¼ U3=u3, the velocity of the liquid at station 3 can be written as

u3 ¼ UMix= 1ð þ sð � 1ÞeÞ ð38Þ
The void fraction in the slug, e, has been measured or analyzed by several researchers (Woods

and Hanratty, 1996; Bendiksen, 1984; Andreussi and Bendiksen, 1989; Nydal et al., 1992). For
UMix < 2

ffiffiffiffiffiffi
gD

p
it is negligible. For UMix > 2

ffiffiffiffiffiffi
gD

p
the data of Woods (Woods, 1998; Woods and

Hanratty, 1996) can be correlated by the expression

e ¼ 0:8 1

2
4 � 1

1þ UMix=8:66ð Þ1:39
� �

3
5 ð39Þ

The slip ratio, s, was estimated indirectly in experiments by Woods and Hanratty (1996) for air–
water flows. From this study s ¼ 1 for UMix < 4 m/s and s ¼ 1:3–1.5 for UMix > 4 m/s.

3.4.2. Bubble velocity
The bubble velocity has been measured over a wide range of pipe diameters in studies by Ruder

and Hanratty (1990), Woods et al., (1996), Gregory and Scott (1969), Kouba and Jepson (1990),
and Nydal et al. (1992). Bendiksen (1984), who looked at the velocity of bubbles injected into a
moving liquid stream, defined three regimes.

At low mixture velocities UMix < 2
ffiffiffiffiffiffi
gD

p
ð Þ gravitational effects are important and the back of the

slug or plug can be modeled as a Benjamin bubble (Benjamin, 1968). The shedding from the tail is
then given as

Qout ¼ 0:542A
ffiffiffiffiffiffi
gD

p
ð40Þ

At the low mixture velocities, where Eq. (40) is applicable, aeration is negligible. For e ¼ 0
conservation of volume for an incompressible flow Eq. (37) gives

u3 ¼ UMix ð41Þ
From Eqs. (38), (40) and (41) one finds that

VB ¼ UMix þ 0:542
ffiffiffiffiffiffi
gD

p
UMix < 2

ffiffiffiffiffiffi
gD

p
ð42Þ
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At slightly higher mixture velocities 2
ffiffiffiffiffiffi
gD

p
< UMix < 3:5

ffiffiffiffiffiffi
gD

p
ð Þ both inertial and gravitational

effects are important. In this range, the experimental data of Bendiksen (1984) and of Woods and
Hanratty (1996) give

VB ¼ 1:1UMix þ 0:542
ffiffiffiffiffiffi
gD

p
2

ffiffiffiffiffiffi
gD

p
< UMix < 3:5

ffiffiffiffiffiffi
gD

p
ð43Þ

At higher mixture velocities UMix > 3:5
ffiffiffiffiffiffi
gD

p
ð Þ inertia dominates; the bubble velocity is given by

Woods and Hanratty (1996) as

VB ¼ 1:2UMix UMix > 3:5
ffiffiffiffiffiffi
gD

p
ð44Þ

The above relations were established for mixture Reynolds numbers ReUMix
¼ UMixD=mL

� �
well

above 2300. Sam and Crowley (1986) measured slug velocities in glycerin–water solutions flowing
with air for ReUMix

< 2300 and found, for these laminar slugs, that

VB ¼ 2UMix ð45Þ

3.4.3. Calculation of the stability height
Eqs. (36), (38), (32), and the bubble velocity relations Eqs. (42)–(45) can be used to predict the

liquid layer height needed for stable slugs to exist AL1=Að ÞCrit. The slip ratio, s, is assumed equal to
1 for UMix < 3:5

ffiffiffiffiffiffi
gD

p
. The magnitude of the interfacial friction factor depends on the wave activity

at the interface. The ratio of the interfacial friction factor to the value that would exist if the
surface were smooth, fi=fs, can vary from 2 to 25. It must be found, experimentally, for the
conditions of interest if an accurate prediction of USL from AL1=Að ÞCrit is to be obtained.

3.5. Slug/plug boundary

Ruder and Hanratty (1990) studied plug flows for air and water flowing in a 9.53 cm horizontal
pipe and found that a symmetric bubble exists at Fr ¼ Vs � u1ð Þ=

ffiffiffiffiffiffi
gD

p
ffi 1:2. For 1:2 < Fr < 1:8

the back of the slug was observed to maintain a shedding rate given by Eq. (40) and the front was
observed to contain a hydraulic jump. For Fr < 1:2 the bubble can be asymmetric. We have
selected Fr ¼ 1:2 as a criterion for the transition from slug flow to plug flow. From Eqs. (6), (40)
and the assumption of a critical Fr of 1.2, one obtains a critical AL1 given by

AL1=Að ÞCrit ffi 0:45 ð46Þ
A mass balance can be written for each phase in terms of the intermittency, I, defined as the

fraction of time a stationary probe in the flow would remain in contact with a slug:

AUSL ¼ 1ð � IÞu1AL1 þ IUMixA ð47Þ
AUSG ¼ 1ð � IÞU1 Að � AL1Þ ð48Þ

The velocity of the gas flowing over the stratified flow in front of the slug, U1, can be found by
applying conservation of mass to the gas flow. For an unaerated slug this gives

U1 ¼ Vs ð49Þ
By adding Eqs. (47) and (48) and using Eqs. (46) and (49) one calculates a mixture velocity which
corresponds to Fr ffi 1:2.
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UMix ffi 0:66
ffiffiffiffiffiffi
gD

p
þ u1 ð50Þ

The velocity of the liquid in the stratified flow, u1, can be evaluated by solving the gas and liquid
momentum balances, Eqs. (6) and (7), with the height of the liquid layer given by Eq. (46). The
hydraulic gradient, dh=dx, in addition to the drag at the interface are needed for an accurate
estimate of u1.

4. Experiments

The data that will be used to examine theoretical predictions demonstrate the effects of pipe
diameter, liquid viscosity, downward inclinations, gas density, and surface tension on the tran-
sition from stratified to slug and plug flow. System properties are summarized in Table 2.

Andritsos et al. (1989) observed transitions in a 25 m long horizontal pipe with a diameter of
9.53 cm for air and liquids with viscosities of 1 cp (water) and 100 cp (glycerin–water solution).
Andritsos and Hanratty (1987a) studied transitions in a 10 m long horizontal pipe with D ¼ 2:52
cm for air and liquids with viscosities of 1 cp (water) and 70 cp (glycerin–water solution). Woods
et al. (2000) studied air and water flowing in a pipe with D ¼ 7:63 cm, a length of 23 m, and
an inclination of �0:5�. In all of these investigations the thickness of the liquid layer, hL, was
measured at several locations along the pipe by pairs of parallel wire conductance probes which
extend vertically across the pipe cross-section.

Heights of the liquid layer, hL, and the superficial liquid velocity at transition to an intermittent
flow are plotted in Fig. 3. A striking feature is the large range of critical USL, compared to critical
hL=D. This emphasizes the importance of being able to solve the average momentum equations for
a stratified flow to obtain USL if hL=D and USG are known.

An important feature of Fig. 3 is that the hL=D and USL required for transition in air–water
flows in a horizontal pipe increase with pipe diameter at low USG. They are roughly independent
of pipe diameter at large USG where slugs form by coalescence of small wavelength irregular waves
that have evolved from a Kelvin–Helmholtz instability. When the pipe is inclined downward the
gravitational pull causes larger liquid velocities (at the same hL=D). This accounts for the increase
in USL required for transition that is shown in Fig. 3. At large USG, the gravitational pull on the
liquid becomes less important, compared to the gas drag at the interface, so that transitions in
horizontal pipes and pipes inclined at h ¼ �0:5� are approximately the same. A consideration of

Table 2

Summary of system properties

Air–water Air–glycerin/water Natural gas Freon–water

Pipe diameter (cm) 9.53, 7.63, 2.52 9.53, 2.52 20.3 17.8

Gas density (kg/m3) 1.2 1.2 65 32.5

Pressure (bar) 1 1 75 5.5

Liquid density (kg/m3) 1000 1220 720 1000

Gas viscosity (kg/ms) 1:8� 10�5 1:8� 10�5 1� 10�5 1:3� 10�5

Liquid viscosity (kg/ms) 0.001 0.1, 0.07 0.00055 0.001

Interfacial tension (N/m) 0.07 0.066 0.0118 0.07
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the critical hL=D (rather than the critical USL) shows that downward inclinations cause a stabi-
lization in that transition occurs at a larger hL=D.

An increase in liquid viscosity increases the stability; that is, transition occurs at higher hL=D.
The independence of the critical hL=D of pipe diameter at low gas velocities is indicative of a
difference in the instability mechanisms for flows with low and high liquid viscosities. The lower
critical USL for high liquid viscosities reflects the increased resistance of the wall to the liquid flow
for a given hL=D and USL for laminar flows. At high gas velocities the critical hL=D is smaller than
for low gas velocities, the liquid flow is turbulent at transition, and the critical USL and hL=D
become approximately independent of pipe diameter and of liquid viscosity.

Wu et al. (1987) reported results on transitions in a 218 m long, horizontal 20.3 cm pipe for
natural gas/condensate flowing at a high pressure (qG ffi 65 kg/m3 and r ffi 0:0118 N/m). Mea-
surements of the height of the liquid layer at transition were not reported. The critical superficial
liquid velocities are shown in Fig. 4.

Fig. 3. Flow regime transition data at ambient pressure: (a) critical h=D (b) critical USL.

Fig. 4. Flow regime transition data at high gas density.
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Crowley et al. (1986) observed transitions in a 34 m long horizontal 17.8 cm diameter pipe for
the flow of high pressure Freon gas (qG ¼ 32:5 kg/m3) and water. Measurements of the height of
the liquid layer were obtained using a rake of conductivity probes. The spacing between the
conductivity sensors allowed hL=Dmeasurements to an accuracy of �4%. The heights of the liquid
layer, hL, and the superficial liquid velocity, USL, at transition are presented as a function of the
superficial gas velocity, USG, in Fig. 4.

5. Interpretation of experiments

5.1. Outline

An analysis of the results discussed in Section 4 supports the observation that a number of
different mechanisms are responsible for the transition from stratified to slug or plug flow. The
specific mechanism, that is applicable, is found to depend on which instability theory predicts the
lowest critical hL=D at a given USG, and whether the height of the liquid layer is large enough to
maintain a stable slug.

Predictions of the critical height of the liquid layer are made using Kelvin–Helmholtz theory,
Eqs. (17), (19a) and (19b) VLW theory, Eqs. (27) and (28), and slug stability theory, Eq. (36). The
critical superficial liquid velocity is calculated from the critical height by using the liquid and gas
phase momentum balances, Eqs. (6) and (7), for turbulent liquid/turbulent gas flows and Eqs. (6)
and (12) for laminar liquid/turbulent gas flows. Predictions of the superficial liquid velocity at the
boundary between plug and slug flow are made by using Eq. (50).

5.2. Interfacial friction factors

Because of the presence of waves, the interfacial friction factor, fi, can be larger than the
friction factor for a smooth surface, fs. It has been correlated with some success by Andritsos and
Hanratty (1987b) as fi=fs ¼ f Dh=kð Þ, where Dh is the wave height and k is the wavelength.
However, no relation for fi=fs, that applies over a large range of fluid properties and flow con-
ditions, is presently available. The interfacial friction factor plays a critical role in the prediction
of transition since it is needed to calculate USL. In the VLW and slug stability theories it is needed
to predict the critical hL=D.

Measurements of the interfacial friction factor were made by Andritsos and Hanratty (1987b)
for the flow of air and water and of air and glycerin–water solutions in 9.53 and 2.52 cm hori-
zontal pipes. A general correlation was developed from this work for gas velocities above the
critical velocity needed for a K–H instability to occur, UCrit. Bontozoglu and Hanratty (1989)
restated this correlation, accounting for the relative velocity between the gas and the liquid; that
is, UCrit is replaced by U � �uu

� �
Crit

. Simmons and Hanratty (2001) measured fi=fs for the flow of air
and water in a 7.63 cm pipe at flow conditions near transition for gas velocities less than
U � �uu
� �

Crit
.

These works suggest that interfacial friction factors close to transition can be estimated for air
and water and air and water–glycerin flows from the following relations:
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fi=fs ¼ 2 smooth liquid surface ðU � �uuÞ6 ðU � �uuÞCrit ð51Þ

fi=fs ¼ 5 wavy liquid surface ðU � �uuÞ6 ðU � �uuÞCrit ð52Þ

fi=fs ¼ 5þ 15 h=dð Þ0:5 ðU
h

� �uuÞ=ðU � �uuÞCrit � 1
i

ðU � �uuÞ > ðU � �uuÞCrit ð53Þ

Eq. (51) follows from results presented by Andritsos and Hanratty (1987b). Eq. (52) is an
average value from data taken by Simmons and Hanratty (2001). Eq. (53) is a correlation given by
Bontozoglu and Hanratty (1989), modified so as to be continuous when switching between Eqs.
(52) and (53).

Crowley et al. (1986) measured interfacial friction factors for flows of Freon gas and water in a
horizontal 17.8 cm pipe. At high gas velocities (for flow conditions near transition), fi=fs was
found to be on the order of 15–20. At low gas velocities, no interfacial friction data are reported
for conditions near transition. Interfacial friction factors are estimated for high pressure flows by
using the following relations:

fi=fs ¼ 2 ðU � �uuÞ6 ðU � �uuÞCrit ð54Þ

fi=fs ¼ 15 ðU � �uuÞ > ðU � �uuÞCrit ð55Þ

5.3. Comparison between theory and experiments for air–water flow in horizontal pipes

Figs. 5 and 6 compare theoretical predictions of the critical hL=D and USL using Kelvin–
Helmholtz theory, viscous long wavelength theory, and slug stability theory with measurements
for air and water flowing in a horizontal pipe. Plug/slug boundary predictions are also shown for
I < 0:5. Friction factors were estimated using Eqs. (52) and (53). Hydraulic gradients were esti-
mated using data obtained by Andritsos et al. (1989) in a 9.53 cm pipe ðdh=dx ¼ �0:0005 for
USG < 3 m/s). In the slug stability calcuations, s ¼ 1 for UMix 6 3:5

ffiffiffiffiffiffi
gD

p
and s ¼ 1:3 for

Fig. 5. Air–water theoretical predictions and transition data, D ¼ 9:53 cm.
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UMix > 3:5
ffiffiffiffiffiffi
gD

p
. The void fraction was calculated using Eq. (39). Arrows are used to indicate the

proposed transition boundary.
Good agreement is observed at small USG between the observed critical hL=D and the VLW

analysis. Furthermore, transition occurs above the hL=D required for the formation of stable
slugs. For large USG the hL=D required for a stable slug is larger than the prediction from the VLW
analysis and from Kelvin–Helmholtz theory. Consequently, this instability should determine the
transition to a slug flow. The measurements of critical hL=D for D ¼ 9:53 cm are consistent with
this proposal. Calculations of critical hL=D are not sensitive to the choice of fi=fs. This is not the
case for calculations of the critical USL. For example, a threefold change of fi=fs in applying VLW
to air–water flow in a 9.53 cm pipe caused a twofold variation of the predicted critical liquid flow
and a negligible variation in the predicted critical liquid height. The agreement between the critical
USL with measurements is not so good. This reflects inaccuracies in estimating fi=fs.

In the 9.53 cm pipe, plug flow is predicted to occur for USG < 0:7 m/s at USL ¼ 0:15 m/s and at
slightly lower USG as USL increases. Lower critical USG for a transition from slug flow to plug flow
are predicted for the 2.52 cm pipe.

Visual observations show that, at large USG, the K–H instability leads to the formation of ir-
regular waves if hL=D is below that required for slug stability.

Lin and Hanratty (1987a,b) observed a pseudo-slug region in which highly aerated waves are
observed to bridge the whole pipe cross-section. These are differentiated from slugs in that they
have smaller velocities, are accompanied by smaller pressure pulses and are not coherent over long
distances in the pipeline. The filled points in Figs. 5 and 6 represent a transition from stratified
flow to a flow with pseudo-slugs.

5.4. Air and glycerin–water solutions in horizontal pipes

Theoretical calculations of critical hL=D and USL are compared with measurements for the flow
of air and glycerin–water solutions in Figs. 7 and 8. Predictions with VLW theory are not shown

Fig. 6. Air–water theoretical predictions and transition data, D ¼ 2:52 cm.
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as neither these waves nor Jeffreys waves (Cohen and Hanratty, 1965) were found to occur in
flows of liquids with high viscosities (Andritsos et al., 1989). Friction factors were estimated by
using Eq. (51) in the K–H calculations and by using Eq. (53) in the slug stability calculations. Due
to the high liquid viscosity, the relation for a laminar bubble, Eq. (45), was used to calculate the
shedding rate needed to consider slug stability. Eq. (12) was used instead of Eq. (9). The slip ratio
was assumed to be equal to 1.3 and Eq. (39) was used to calculate the void fraction.

Critical hL=D for a 100 cp liquid flowing in a 9.53 cm pipe agree with predictions from K–H
theory for USG < 4 m/s. For USG > 4 m/s, transition was visually observed to be due to the co-
alescence of K–H waves; predictions from slug stability theory agree with the transition data.
Since the mixture Reynolds number reaches 10,000 at USG � 10 m/s, the flow might be expected to
be turbulent. Predictions of slug stability using bubble velocity relations for both turbulent, Eqs.
(42)–(44) and laminar, Eq. (45), flows are shown in Fig. 7.

Fig. 8. Air–70 cp glycerin–water solution theoretical predictions and transition, D ¼ 2:52 cm.

Fig. 7. Air–100 cp glycerin–water solution theoretical predictions and transition data, D ¼ 9:53 cm.
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Critical hL=D for a 70 cp liquid flowing in a 2.52 cm pipe agree with predictions from K–H
theory if USG 6 3 m/s. For USG > 4 m/s, critical heights of the liquid layer were not reported. The
observed USL at transition for USG > 4 m/s show a trend similar to that predicted by slug stability
theory. The mixture Reynolds number reaches 3000 at a USG � 10 m/s. Slug stability calculations
could require the use of relations for bubble velocity in turbulent fluids at higher USG than were
studied.

Critical USL do not agree with predictions for USG < 4 m/s in both the 100 and 70 cp flows.
Better agreement would be expected since theoretical and experimental values of hL=D are close to
one another. This suggests either that incorrect hydraulic gradients are used or that the equation
for the liquid flow is not appropriate.

It is noted that the critical hL=D for the 2.52 and 9.53 cm pipes are the same at these high
viscosities. This is contrary to the prediction of a strong effect of pipe diameter in the Taitel and
Dukler correlation, but is consistent with defining transition as due to a K–H instability.

5.5. Predictions for declined flow of air and water

Measurements of the critical hL=D and USL are compared in Fig. 9 for the flow of air and water
in a 7.63 cm pipe that is inclined at �0.5�. In the VLW and K–H calculations, fi=fs was assumed
to be given by Eq. (51) as a smooth surface was observed in these flows. In the slug stability
calculations, s ¼ 1 for UMix 6 3:5

ffiffiffiffiffiffi
gD

p
and s ¼ 1:3 for UMix > 3:5

ffiffiffiffiffiffi
gD

p
, and Eq. (39) was used to

calculate the void fraction.
Transition for declined flow at �0.5� was observed to be due to the growth of long wavelength

waves for USG < 6 m/s (Woods et al., 2000). This is confirmed by the agreement between pre-
dictions using VLW theory and the experimental data. The critical height in downflow is observed
to be greater than the critical height in horizontal flows. This stabilizing effect of gravity is due to
the reduction of the effects of liquid inertia, qL CR � �uuð Þ2. For USG > 6 m/s, transition was ob-
served to be due to the coalescence of K–H waves, as in horizontal flows. Measurements were not

Fig. 9. Air–water theoretical predictions and downflow transition data, D ¼ 7:63 cm.
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reported at high velocities, but slug stability is believed to predict the transition boundary for
USG > 6 m/s, as is suggested in Fig. 9.

Since the liquid interface is smooth at transition, the estimation of fi=fs should be good. As a
consequence, the predictions of the critical USL are satisfactory.

5.6. Predictions for a natural gas pipeline

Calculations for flow of natural gas and natural gas condensate in a 20.3 cm pipe are given in
Fig. 10. Kelvin–Helmholtz waves are predicted to occur at very low gas velocities in this system
due to the high gas density and low surface tension. VLW waves should not play an important
role in these flows, so predictions of their onset are not shown. The value of fi=fs was assumed to
be given by Eq. (54) in the K–H predictions. In the slug stability calculations and the slug/plug
boundary predictions, fi=fs was assumed to be given by Eq. (55). Hydraulic gradients were taken
to be of the same order as was observed in the Freon gas–water flows ðdh=dx ¼ �0:001Þ for both
slug stability and plug/slug boundary calculations. In the slug stability calculations, s ¼ 1 for
UMix 6 3:5

ffiffiffiffiffiffi
gD

p
and s ¼ 1:3 for UMix > 3:5

ffiffiffiffiffiffi
gD

p
, and Eq. (39) was used to calculate the void

fraction.
Measurements of the height of the liquid layer are not reported for the natural gas flows. Values

of the critical height of the liquid layer obtained from K–H theory and from slug stability theory
are shown. These calculations suggest that the coalescence of waves that have evolved from a K–
H instability produces slugs. The critical conditions obtained from K–H theory are in a region
where slugs are unstable. Therefore, transition is dictated by slug stability, in agreement with
measurements of the critical USL. Plug flow is predicted to occur for USG < 2 m/s at USL ¼ 0:9 m/s
and at slightly lower USG as USL increases.

Critical hL=D given by the Taitel–Dukler correlation are also shown in Fig. 10. These are quite
different from what is predicted from slug stability, in that the TD critical USL are much smaller
than the measurements.

Fig. 10. Natural gas/condensate theoretical predictions and transition data, D ¼ 20:3 cm.
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5.7. Predictions for Freon gas–water

Fig. 11 compares theoretical predictions of the critical hL=D and USL with measurements for the
flow of Freon gas and water in a 17.8 cm pipe. In the calculations of the stability of a stratified
flow to VLW waves, of slug stability, and of the plug/slug boundary, the friction factor ratio, fi=fs,
was assumed to be given by Eqs. (54) and (55). Eq. (54) was used in predictions of the K–H
instability. Hydraulic gradients were estimated using measured values reported by Crowley et al.
(1986) ðdh=dx ¼ �0:001Þ for USG < 0:75 m/s. In the slug stability calculations s ¼ 1 for
UMix 6 3:5

ffiffiffiffiffiffi
gD

p
and s ¼ 1:3 for UMix > 3:5

ffiffiffiffiffiffi
gD

p
, and Eq. (39) was used to calculate the void

fraction. At low gas velocities the critical hL=D predicted by the VLW analysis are lower than
what is predicted by K–H theory. However, this instability cannot lead to stable slugs or plugs at
the predicted transition. Therefore, the criterion for slug or plug stability should define the critical
conditions. At large gas velocities, irregular waves that evolve from a K–H instability should
dominate the interface. Their coalescence leads to slugs if hL=D is large enough for them to be
stable.

A precise transition boundary is not given by Crowley et al. The transition zone is defined by
the circles and squares in Fig. 11, with the boundary somewhere between these extremes. The
measurements of the critical hL=D and the critical USL agree with predictions from slug stability
theory. Plug flow is predicted to occur for USG < 1:5 m/s at USL ¼ 0:55 m/s and at slightly lower
USG as USL increases.

6. Discussion

Theories used in this paper were developed in previous works. The contribution is the sys-
tematic comparison of available theories to experiments that cover a range of fluid properties and

Fig. 11. Freon gas–water theoretical predictions and transition data, D ¼ 17:8 cm.
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pipe diameters. This allows the generality of the analyses to be judged. In the comparisons be-
tween predictions and experimental measurements, three different theories are found to define
transition at low superficial gas velocities, that is VLW instability in air–water flows at low
pressures, Kelvin–Helmholtz instability for viscous liquids, and slug stability in the two flows with
high gas densities. At high gas velocities, transition is defined by slug stability theory in all cases
considered.

The use of slug stability theory for the prediction of transition from stratified to intermittent
flow differs from approaches that consider the stability of a stratified flow at low gas velocities and
ad hoc assumptions about a critical hL=D at large gas velocities, such as used by Taitel and Dukler
(1976). In the case of high pressure natural gas/natural gas condensate flows this approach results
in a significant improvement in the accuracy of predictions for all gas velocities, as seen in Fig. 10.

The accuracy of the theoretical calculations could be greatly improved if the interfacial friction
factor, the liquid hydraulic gradients, the bubble velocity, the slug void fraction, and the slip ratio
in the slug were better known over a wider range of fluid properties. The interfacial friction factor
at transition is of critical importance since all of the theories are sensitive to the value of fi=fs that
is used.

In slug stability theory, the relation between the bubble velocity and the mixture velocity is
central to the accurate estimation of the critical height of the liquid layer. Improvement in the
predictions could be realized if this dependence were measured more accurately at flow conditions
near transition. Currently available measurements of bubble velocity were taken at large super-
ficial liquid velocities, well above the transition values. The mixture velocity at which the laminar
relation, Eq. (45), must be used to calculate the bubble velocity is not well established.

7. Flow regime prediction

It is appropriate to close this paper by outlining a methodology that can be used to predict the
occurrence of slug and plug flows. The first step is to compare the heights of liquid layers needed
for the onset of Kelvin–Helmholtz waves ðhL=DÞK–H, viscous long wavelength waves ðhL=DÞVLW,
and for a slug to be stable ðhL=DÞSS. The onset of either K–H or VLW waves will define the
transition if the liquid layer is high enough to sustain a stable slug. If hL=DK–H and ðhL=DÞVLW are
both greater than ðhL=DÞSS, then the lower of hL=Dð ÞK–H and hL=Dð ÞVLW is the height at which
transition will occur. If ðhL=DÞSS is greater than either ðhL=DÞK–H or ðhL=DÞVLW, then ðhL=DÞSS is
the height at which transition will occur. This algorithm assumes that both K–H and VLW in-
stabilities will occur. Once the transition height is known, the superficial liquid velocity at tran-
sition, USL, can be predicted from the liquid and gas momentum balance equations, Eqs. (6) and
(7).
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